skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Rampazzi, Sara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ransomware attacks have become increasingly frequent and high-profile, resulting in billions of dollars in data and operational losses annually. Current mechanisms typically deploy defenses in vulnerable operating systems, making them susceptible to advanced adversaries capable of compromising the OS. While implementing defense mechanisms within storage devices can address this vulnerability, they lack detection accuracy due to their inability to access data semantics, such as file system metadata. Moreover, these methods only expose block-level interfaces without file-level information, limiting the usability and practicality of data recovery management. Therefore, we developSrFTL, a novel ransomware defense framework that allows leveraging data semantics for accurate ransomware detection and effective file-level data recovery against data compromise. Specifically, SrFTL employs defense enforcement within the flash translation layer (FTL) of SSDs. Then, SrFTL combines the secure enclave with the modified FTL through a secure channel to enable flexible ransomware defenses within the enclave. Finally, SrFTL deploys ransomware classification and data recovery defenses in the enclave, providing high detection accuracy and low-cost data recovery. Our evaluation demonstrates that SrFTL achieves zero false positives and negatives when detecting our collected real-world ransomware samples and benign applications, outperforming current FTL-level solutions (e.g., MimosaFTL). Moreover, SrFTL introduces on average a trivial performance overhead of 1.5% compared with a regular SSD. Finally, evaluating against multiple real-world ransomware samples, SrFTL enables fast data recovery with an average time of 9.3 seconds. SrFTL thus bridges the semantic gap between the FTL and OS-level file information to stop ransomware while maintaining the integrity and authenticity of employed defenses. 
    more » « less
  2. All vehicles must follow the rules that govern traffic behavior, regardless of whether the vehicles are human-driven or Connected, Autonomous Vehicles (CAVs). Road signs indicate locally active rules, such as speed limits and requirements to yield or stop. Recent research has demonstrated attacks, such as adding stickers or dark patches to signs, that cause CAV sign misinterpretation, resulting in potential safety issues. Humans can see and potentially defend against these attacks. But humans can not detect what they can not observe. We have developed the first physical-world attack against CAV traffic sign recognition systems that is invisible to humans. Utilizing Infrared Laser Reflection (ILR), we implement an attack that affects CAV cameras, but humans can not perceive. In this work, we formulate the threat model and requirements for an ILR-based sign perception attack. Next, we evaluate attack effectiveness against popular, CNNbased traffic sign recognition systems. We demonstrate a 100% success rate against stop and speed limit signs in our laboratory evaluation. Finally, we discuss the next steps in our research. 
    more » « less
  3. Stalkerware is a form of malware that allows for the abusive monitoring of intimate partners. Primarily deployed on information-rich mobile platforms, these malicious applications allow for collecting information about a victim’s actions and behaviors, including location data, call audio, text messages, photos, and other personal details. While stalkerware has received increased attention from the security community, the ways in which stalkerware authors monetize their efforts have not been explored in depth. This paper represents the first large-scale technical analysis of monetization within the stalkerware ecosystem. We analyze the code base of 6,432 applications collected by the Coalition Against Stalkerware to determine their monetization strategies. We find that while far fewer stalkerware apps use ad libraries than normal apps, 99% of those that do use Google AdMob. We also find that payment services range from traditional in-app billing to cryptocurrency. Finally, we demonstrate that Google’s recent change to their Terms of Service (ToS) did not eliminate these applications, but instead caused a shift to other payment processors, while the apps can still be found on the Play Store; we verify through emulation that these apps often operate in blatant contravention of the ToS. Through this analysis, we find that the heterogeneity of markets and payment processors means that while point solutions can have impact on monetization, a multi-pronged solution involving multiple stakeholders is necessary to mitigate the financial incentive for developing stalkerware. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    The US CDC has recognized moist-heat as one of the most effective and accessible methods of decontaminating N95 masks for reuse in response to the persistent N95 mask shortages caused by the COVID-19 pandemic. However, it is challenging to reliably deploy this technique in healthcare settings due to a lack of smart technologies capable of ensuring proper decontamination conditions of hundreds of masks simultaneously. To tackle these challenges, we developed an open-source wireless sensor platform---VeriMask1 ---that facilitates per-mask verification of the moist-heat decontamination process. VeriMask is capable of monitoring hundreds of masks simultaneously in commercially available heating systems and provides a novel throughput-maximization functionality to help operators optimize the decontamination settings. We evaluate VeriMask in laboratory and real-scenario clinical settings and find that it effectively detects decontamination failures and operator errors in multiple settings and increases the mask decontamination throughput. Our easy-to-use, low-power, low-cost, scalable platform integrates with existing hospital protocols and equipment, and can be broadly deployed in under-resourced facilities to protect front-line healthcare workers by lowering their risk of infection from reused N95 masks. We also memorialize the design challenges, guidelines, and lessons learned from developing and deploying VeriMask during the COVID-19 Pandemic. Our hope is that by reflecting and reporting on this design experience, technologists and front-line health workers will be better prepared to collaborate for future pandemics, regarding mask decontamination, but also other forms of crisis tech. 
    more » « less